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ABSTRACT

An assessment is made of the potential of different global-local analysis
strategies for predicting the nonlinear and postbuckling responses of
structures. Two postbuckling problems of composite panels are used as bench-
marks and the application of different global-local methodologies to these
benchmarks is outlined. The key elements of each of the global-local
strategies are discussed and future research areas needed to realize the full
potential of global-local methodologies are identified.

NOMENCLATURE
EL’ Ep Elastic moduli of the individual layers in the
direction of fibers and normal to it, respectively
GLT' GTT Shear moduli in plane of fibers and normal to it,
respectively
h Thickness of panel
L1, Lo Side lengths of panel
N Total axial force acting on the edge of the panel
q Edge displacement
R Radius of curvature of the panel middle surface
r Number of global approximation vectors
U Total strain energy of the panel
ua, W Displacement components in the coordinate directions
Xa’ x3 Orthogonal curvilinear coordinate system
VLT Major Poisson's ratio of the individual layers
61 Axial strain
The range of the subscript a is 1,2.

1. INTRODUCTION

Considerable progress has recently been made in computational mechanics
which is manifested by the development of versatile and powerful finite-
element discretization methods, improved numerical algorithms and programming
techniques (see, for example, BELYTSCHKO & HUGHES [1983]; NOOR & PILKEY
[1983]; NOOR [1983]; LIU, BELYTSCHKO & PARK [1984]; and KARDESTUNCER
[1985]). Also, an explosive growth has taken place in computer technology.
In particular, the introduction of large expensive computer systems, usually
referred to as supersystems, such as CRAY X-MP, CDC CYBER 205 and Denelcor
HEP1 has made possible new levels of sophistication in the modeling of complex
structures which were not possible before (NOOR, STORAASLI & FULTON [1984]).
In spite of these advances the detailed stress analysis of complex structures
is very time consuming and, therefore, is not economically feasible. To date
the only realistic structural response simulations that have been obtained
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involve either simple structural configurations or components of complicated
configurations. Prediction of the response of future complex structures such
as those of flight vehicles is likely to require more sophisticated analysis
models than has heretcfore been done. This is because of the requirements of
high performance, light weight and economy and the associated stringent design
criteria. Also, analysis may of necessity replace tests in some mission-
critical areas.

Among the different analysis methodologies that have high potential for
the accurate prediction of detailed stress distribution in structures without
overtaxing the available computational resources are the global-local
methodologies which are basically hybrid modeling and/or analysis fechniques.
In order to put these methodologies in proper perspective, a brief summary is
given of the different approaches for reducing the cost and/or time for
solving nonlinear problems. The efforts devoted to this activity can be
grouped into three different levels.

The first level is modeling. Reductions in cost of analysis can be
achieved by using simple models that capture major effects in the responses
and by exploiting all the symmetries and quasi-symmetries in the problem (see
NOOR & PETERS [1985]; and NOOR, ANDERSEN & TANNER [1985]).

The second level is that of computational strategies. Significant re-
ductions in time can be achieved by incorporating the known physical behavior
into the computational model of the structure and by using global-local
methodologies in which different analysis methods and/or models are coupled
for predicting the nonlinear response of the structure.

The third level is that of numerical algorithms. These include fast
algorithms for solution of equations (e.g., multigrid methods, operator
splitting techniques, dynamic relaxation, and element-by-element techniques
-HACKBUSCH & TROTTENBERG [1982]; UNDERWOOD [1983]; and HUGHES, RAEFSKY,
MULLER, WINGET & LEVIT [1984]); as well as the vectorized and parallel
numerical algorithms for use on pipeline and parallel processors (SCHENDEL
[1984]; MIKLOSKO & KOTOV [1984]; and PADDON [19841]).

The present study deals with global-local methodologies which belong to
the second category. Specifically, the objectives of this paper are:

1) To review and assess the potential of a number of different global-
local analysis strategies for predicting the nonlinear and postbuckling
responses of structures

2) To identify the future directions for research required to realize
their full potential

Discussion of global-local methodologies is primarily focused on
nonlinear analysis of composite panels with discontinuities (e.g., stiffeners
and cutouts). Two benchmark problems of composite cylindrical panels with
cutouts typical of those used in modern aircraft structures are selected to
provide a focus for the discussion. However, many of the conclusions apply to
other complex structural configurations.

The paper is divided into three parts. The first part describes the two
benchmark problems, identifies their major characteristics, and lists the
difficulties encountered in analyzing them using conventional finite-~element
methods. In the second part of the paper four global-local analysis
strategies are reviewed and the potential for using these strategies in
analyzing the benchmark problems is assessed.

The third part of the paper identifies the items that pace the progress
of global-local methodologies and their application to nonlinear analysis.
These are the recommended future directions of research.
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2. BENCHMARK PROBLEMS AND THEIR CHARACTERISTICS

The two benchmark problems selected for this study are shown in Fig. 1.
They are postbuckling problems of laminated composite cylindrical panels with
central circular cutouts. The loading consists of applied axial end
displacements. One of the panels is unstiffened and the other has discrete
blade stiffeners. The two panels are generic examples of modern composite
aircraft components for which postbuckling strength is desired in the presence
of local discontinuities such as holes and cracked stiffeners. In the
conventional finite-element approach the panels are modeled using two-
dimensional shell elements and the stiffeners are modeled using two-
dimensional plate elements. The unstiffened panel was analyzed using an in-
house research program. Shear-flexible mixed finite elements were used in the
modeling (see NOOR & ANDERSEN [1982]). Also, extensive numerical solutions to
this problem using continuum-based shell elements are presented in STANLEY
{1985] in which the imperfection sensitivity of the panel is assessed. The
stiffened panel was analyzed using the EISI-EAL program and the analysis
results are given in KNIGHT, GREENE & STROUD [1985]. The characteristics of
the finite-element models used in the present study and those used in KNIGHT,
GREENE & STROUD [1985] are summarized in Table 1. The response of both panels
exhibits inversion symmetry, and therefore, only one half of each panel needs
to be analyzed (see NOOR, MATHERS & ANDERSON [1977]). The numbers between
parentheses in Table 1 refer to the number of elements and degrees of freedom
required for analyzing the full panel.

The response of the unstiffened panel is shown in Figs. 2 and 3. The
postbuckling response of the panel exhibits a sudden drop in the loading due
to delamination in the neighborhood of the cutout (see KNIGHT & STARNES
[1984]). Figure 2 shows plots of the total axial load versus axial and normal
displacements up to the maximum load reached. For the range of loading
considered, the results shown in Fig. 2 agree reasonably well with the
experimental and numerical results presented in KNIGHT & STARNES [1984].

Figure 3 shows normalized contour plots of the axial and normal displace-
ments as well as the axial strains on the top and bottom surfaces. Note the
high strain concentration at the cutout. A finer model near the cutout is
required for the accurate prediction of the strain in that region. On the
basis of the studies made, the following characteristics of the two benchmark
problems can be identified:

1. The presence of discontinuities (cutouts and stiffeners) results in
large numbers of degrees of freedom in the finite-element models.

2. The detailed stress analysis (including determination of interlaminar
stresses) near the cutout requires either a higher order two-dimensional
theory or a three-dimensional theory. Failure analysis (including prediction
of delamination) requires even more sophistication in the modeling and
analysis.

3. The postbuckling response exhibits large rotations in certain
regions.

4. The postbuckling response of the unstiffened panel is highly
sensitive to initial imperfections. Tracing the postbuckling response past
the maximum load point requires the inclusion of initial imperfections in the
model (see STANLEY [1985]).

3. GLOBAL-LOCAL ANALYSIS STRATEGIES

In this section, the application of four different global-local analysis
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strategies to the prediction of the nonlinear response of benchmark composite
panels is discussed. 1In each case, the key features of the global-local
approach and the requirements for its effective implementation are identified.

3.1 Zooming Technique

The first global-local approach considered is the zooming technique in
which a global solution is obtained using a coarse grid. Then the detailed
stress distribution near the cutout (local solution) is obtained by zooming on
that area, refining the model, and using the displacements from the coarser
model as input for the refined model (see Fig. 4). Single or multiple levels
of zooming can be made corresponding to multiple passes from coarse to fine
subdivisions (WILKINS [1983], and HIRAI, UCHIYAMA, MIZUTA & PILKEY [1985]).
Interelement compatibility can be maintained by either embedding the region of
the fine grid into a superelement or by using transition elements at the
interface between the coarse and the fine grids (ARMEN, Grumman Aircraft
Systems, Bethpage, NY, Private Communication, 1985).

A number of questions remain in connection with this technique, namely:

1. Limitations of the technique for nonlinear problems

2. Criteria for selecting the extent of the region for refining the
model and selection of the refined model

3. Treatment of the interfaces between the coarse and the fine grids and
the effect of the error on the boundary data for the refined model on the
accuracy of the stresses in that model

The early work on zooming techniques was based on heuristic and intuitive
approaches for selecting the fine model. More recent work is based on the
distribution of the strain energy density function. Currently, a variety of
adaptive refinement techniques are available. Some of these techniques will
be discussed in subsequent sections.

3.2 Simultaneous Application of Two Discretization Techniques

The early applications of this approach consisted of the simultaneous use
of the finite-element method and the global (classical) variational technique
(see MOTE [1971]). A variety of options are available depending on the extent
of using each of the two techniques in the model (DONG [1983]). The concept
has been later generalized to cover other techniques for the global
(approximate) solution and the local (detailed) solution. A list of the
common techniques used for generating these solutions is shown in Table 2.

The global solution can be obtained by using classical variational
methods (e.g., Rayleigh-Ritz or weighted-residual approaches), or any of the
discrete element methods (conventional finite elements, global elements,
boundary element method) or their combinations. In the global (or macro)
element method the structure is divided into a small number of elements and a
suitable (usually nonpolynomial) approximation is made within each element.
The continuity of the field variables across the interfaces is imposed
impliecitly in the variational functional (DELVES & HALL [1979], and DELVES &
PHILLIPS [1980]). The global element method is a compromise between classical
variational techniques and finite-element method. It combines the rapid
convergence of global variational methods with the ability to handle
complicated geometries.

The boundary element method is an effective technique for solution of
linear and materially nonlinear structural problems with high stress gradients
(or singularities). However, it is not competitive with either the finite-
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element or the global element method for geometrically nonlinear problems (see
KAMIYA & SAWAKI [1982]; and KAMIYA, SAWAKI & NAKAMURA [1984]).

Among the different techniques for local analysis are the discrete ele-
ment methods and analytical solutions (e.g., polar and/or edge functions
PATTIBIRAMAN, RAMAMURTI & REDDY {1974]). Figure 5 shows three different
combinations of discrete element methods for analyzing the unstiffened
composite panel.

The effective implementation of this global-local strategy requires:

a) criteria for selecting the proper global and local analysis techniques and
b) problem-adaptive strategies for generating global solutions and treatment
of interfaces.

3.3 Reduction Methods

These are hybrid two-step techniques which are based on the successive
application of a discrete element method (finite elements, boundary elements
or combination of finite elements and boundary elements) and classical
variational techniques (see, for example, NOOR [1982]; and NOOR & PETERS
[1983]1). The discrete element method is used to generate few global
approximation vectors (or modes). The classical variational technique is then
used to compute the amplitudes of these modes. The primary objective of using
reduction methods is to reduce considerably the number of degrees of freedom
in the initial discretization, and hence, reduce the computational effort
involved in the solution of the nonlinear problem.

The application of reduction methods to the unstiffened composite panel
problem is depicted in Figs. 6 and 7. Figure 6 shows the accuracy of the
normal displacements and total strain energy obtained by using four global
approximation vectors (generated at zero loading). Figure 7 shows contours of
the normal displacement w of the first three global approximation vectors.

Two recent applications of reduction methods deserve further examination.
In the first, only partial reduction is made. The degrees of freedom in the
region of strong nonlinearity (e.g., near the cutout) are retained; the other
degrees of freedom are reduced. In the second application, the response of a
complex structure (e.g., stiffened panel) is generated using small (or large)
perturbations from the response of a simpler system (e.g., unstiffened
panel). It is also possible to use a hierarchy of simpler structural systems
in generating the response of the original complex structure. This is
accomplished by choosing a number of perturbation parameters, and successively
applying a single-parameter reduction method with each of the parameters.
Application of this strategy to the nonlinear analysis of anisotropic panels
is described in NOOR [1985].

The wide acceptance of reduction methods and their incorporation into
commercial programs requires: a) the selection of a simple set of global
approximation vectors and b) the development of a problem-adaptive. strategy
for error sensing and control.

3.4 Hierarchy of Mathematical Models and/or Numerical Approximation
Techniques

The last global-local approach considered is that based on a hierarchy of
mathematical models for different parts of the structure. The application of
this approach to the stiffened composite panel is depicted in Fig. 8 where a
heuristic choice is made of the mathematical models. For the panel a
boundary-layer (or a higher order two-dimensional) theory is used near the
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cutout, followed by a first-order shear deformation theory, and then a
classical shell theory. For the stiffeners, a plate theory is used near the
cutout, followed by a thin-walled beam theory and then a shear deformation or
a classical beam theory. The effective implementation of this approach
requires the following:

1. Systematic procedure for generating the hierarchy of mathematical
models (e.g., the method of initial functions of V. Z. Vlasov - VLASOV &
LEONTEV [1966]; and IYENGAR, CHANDRASHEKHARAN & SEBASTIAN [1974]); or the
asymptotic integration technique - GOLDENVEIZER [1976])

2. Criteria for the adaptive refinement of the mathematical model

3. Treatment of the interfaces between the different regions

4, TREATMENT OF INTERFACES

The treatment of interfaces is one of the key elements of the global-
local analysis. The two commonly used approaches for maintaining displacement
compatibility and traction reciprocity at the interfaces are: 1) Lagrange
multiplier method; and 2) penalty function method. The second approach has
the advantage that it does not lead to any extra unknowns or equations (DELVES
& HALL [1979]). The numerical problem associated with increasing the penalty
weight, to meet constraint satisfaction tolerances can be overcome by using
the iterative procedure described in FELIPPA [1978].

5. QUALITY CONTROL OF NUMERICAL SOLUTIONS

One of the most difficult aspects of numerical modeling is the validation
of the results and ensuring that a given model is adequate for the particular
problem at hand. In general, there are three types of errors in the numerical
solution. These errors are (see UTKU & MELOSH [1984]):

1. Mathematical modeling errors, which result from the simplifications
made in abstracting the mathematical model from the real structure.

2. Discretization errors, which are caused by the numerical discreti-
zation of the continuous mathematical model.

3. Manipulation errors, which are caused by: a) the finite precision
of the computers (limitation in representing real numbers due to the finite-
ness of the computer word length); and b) the errors resulting in the process
of solving the equations of the discrete model (e.g., using iterative
methods).

In this paper only the second type, namely: discretization errors, is
considered. There are two classical approaches for estimating these errors
(KELLY, GAGO & ZIENKIEWICZ [1983]).

1. Extension methods - based on reanalysis of the structure on a
sequence of meshes of increasing refinements (h extension); with a hierarchic
set of interpolation polynomials (p extension); or using a combination of the
two (h-p extension).

2. Dual (or complementary) procedure - based on obtaining two solutions
with two different computer programs to provide bounds on global response
characteristics.

Both of these approaches are too expensive for practical implementation.

In recent years, considerable effort has been devoted to the development
of a posteriori error estimates that are based on information obtained during
the solution process itself (KELLY, GAGO & ZIENKIEWICZ [1983]; BABUSKA & GUI
[1985]; SZABO [1984]; and SPECHT [1984]). For structural mechanics problems,
all these error estimates were developed for compatible displacement models.




Among the error estimators developed to date are the following two:

1. Local energy norm error. This is the square root of the strain
energy of the error. This is a local-global measure in the sense that it
measures a global response characteristic, locally (within an individual
element). In nonlinear problems, the measure can be used by linearization
around a nonlinear solution and evaluating the energy norm of the linearized
problem.

2. Interior and boundary residuals. These represent the equilibrium
defects in the interior on the portion of the boundary where tractions are
prescribed as well as the jumps in the tractions at interelement boundaries.
For uniform grids with linear, bilinear and trilinear shape functions the
contributions of the jumps dominate the residual and, therefore, the residual
can be approximated by the traction jumps. A simple approximate method of
evaluating these residuals for elements with hierarchic shape functions was
given in KELLY, GAGO & ZIENKIEWICZ [1983].

The error estimators, in addition to providing information about the
quality of solutions, form the basis for adaptive improvement of the finite-
element solution. This can be accomplished by enriching or improving the
approximation using one of the following approaches (or possibly, their
combinations).

1. Refining the mesh

2. Moving the nodes (node relocation)

3. Increasing the local order of the approximation

4, Using the iterated defect correction method

The third approach has the advantages over the first two of being easy to
implement and of providing a simple formula for the error estimator. The
fourth approach is based on using the numerical solution obtained to con-
struct a pseudo or neighboring problem whose exact solution is known (e.g.,
polynomial or spline interpolation of the discrete numerical solution). The
pseudo problem is then solved using the same finite-element model as that used
for the original problem. The error in the pseudo problem is assumed to be a
close approximation of the error in the original problem and is used as a
correction to that solution. The technique has been successfully applied to
the numerical solution of stiff systems of ordinary differential equations and
appears to have high potential for application to finite-element boundary
value-problems (ZADUNAISKY [1976]; FRANK, HERTLING & MONNET [1983]; and BOHMER
& STETTER [19841]).

6. POSTPROCESSING AND STRESS CALCULATION

In displacement finite-element models, the strain energy of the structure
is the highest quality information that can be extracted from the finite-
element solution. The accuracy and rate of convergence of stresses depend on
how (and where) they are computed. Several approaches have been suggested for
improving the accuracy of stress calculations (see, for example, HINTON &
CAMPBELL [1974]; CAREY [1982]; ZIENKIEWICZ, XI-KUI & NAKAZAWA [1985]; and
BABUSKA & MILLER [1984]). Among these are:

1. Evaluating the stresses at numerical quadrature points and deter-
mining their values at the nodes by extrapolation

2. Computing the stresses using the discarded structural equations
(corresponding to prescribed displacement boundary conditions)

3. Averaging or smoothing based on projection techniques

4. Using influence function methods
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The first approach is by far the most commonly used. Superconvergence
(increased accuracy and improved rates of convergence) has been observed for
stresses evaluated at quadrature points. Note that the stresses cannot have a
faster convergence than the strain energy. The second approach is parti-
cularly useful for evaluating the stresses at the boundaries. The third and
fourth approaches improve the accuracy of stress predictions through the
filtering of spurious oscillations. A systematic assessment of the latter two
approaches is needed.

7. FUTURE DIRECTIONS FOR RESEARCH

Global-local analysis strategies have high potential for the reliable and
efficient prediction of the nonlinear response of complex structures subjected
to different loadings. To realize this potential the global-local strategy
must include the following seven key elements:

1. Rational selection of a hierarchy of mathematical models for
different parts of the structure and a strategy for the adaptive refinement of
these models

2. Use of global (or macro) elements for discretization whenever approp-
riate with interface conditions satisfied via exterior penalty method

3. Use of reliable failure criteria and discrete elements that account
for the progressive failure mechanisms

4, Application of operator splitting in conjunction with reduction
method for generating the response of the complex structure by using large
perturbations from the response of a simpler structure

5. Postprocessing to increase the accuracy of stress calculations

6. Quality control of numerical solutions

7. Exploiting the computational power of new multiprocessor machines
through parallelization of the problem formulation, computational strategy as
well as the numerical algorithms.

Each of the aforementioned key elements requires major development to
reach the level of maturity needed for routine inclusion in the global-local
strategy. To this end, there are pacing items that must be addressed by the
research community. Among the items that pace the progress of global-local
methodologies are the development of:

1. Criteria and control parameters for selecting the mathematical model,
as well as adaptive strategies for refining the model whenever needed. Also,
strategies for blending regions of different structural behavior (e.g.,
boundary layer, two/three dimensional models of the structure).

2. Reliable failure criteria and shell elements that account for the
composite delamination mechanisms.

3. Simple and accurate techniques for stress calculations which provide
the same accuracy as that of the strain energy.

4, Error estimation and adaptive improvement strategies. This is an
area which requires more attention by researchers. In particular, error
estimators that satisfy the following four criteria need to be developed for
nonlinear analysis:

a) provide reliable local assessment of the error with extrapolation to
global estimation

b) computationally inexpensive to evaluate

c) applicable to a wide class of discrete elements

d) easy to use in conjunction with adaptive improvement

5. Parallel computational strategies for multiprocessor computers.




These strategies include the use of: a) primitive variables (e.g., three-
field mixed formulation); b) domain decomposition (with minimization of
interfaces); and c¢) operator splitting to uncouple the algebraic equations.

In addition, the intense research effort currently under way on parallel
numerical algorithms (see, for example, NOOR [1983], and PADDON [1984]) should
be brought to bear on global-local methodologies. Due to the wide variety of
new parallel computers, the idea of developing macro algorithms which are
efficient on different parallel machines should be investigated. The
numerical tasks in these algorithms are performed by different programs which
are optimized for each of the individual machines.

CONCLUDING REMARKS

A review and an assessment were made of global-local strategies for the
nonlinear analysis of structures. To provide a focus for the discussion two
benchmark problems of postbuckling of laminated composite cylindrical panels
were selected. The major characteristics of these problems were identified.

A number of global-local analysis strategies were reviewed, their
potential for solving the benchmark problems discussed and their shortcomings
delineated. Also, error estimation and postprocessing techniques were
reviewed.

The items that pace the progress of global-local methodologies are
identified and are, therefore, recommended as future directions for
research. These include the coupling of different global-local methodologies;
postprocessing and stress calculation methods; quality control and adaptive
improvement of numerical algorithms; and effective computational strategies
for new computing systems.
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TABLE 1. CHARACTERISTICS OF THE FINITE-ELEMENT MODELS USED FOR THE BENCHMARK

PROBLEMS

Unstiffened Panel

Blade~Stiffened Panel
(Knight, Greene & Stroud [1985])

Mesh 1 Mesh 2
Type of Element Mixed, 9-Noded « Hybrid 4-Noded -
Number of 66 188 544
Elements (376) (1088)
Number of Displace~
ment Degrees of 1338 (;Zgg) (;ggg)
Freedom®

TABLE 2. PARTIAL LIST OF THE COMMONLY USED TECHNIQUES FOR GLOBAL AND LOCAL

ANALYSES

GLOBAL (APPROXIMATE) ANALYSIS

LOCAL (DETAILED) ANALYSIS

o Global variational methods

o Discrete element methods
o Conventional finite elements
o Global element method
o Boundary element method

o Analytic solutions

o Discrete element methods
o Conventional finite elements
o Special elements
o Superelements
o Boundary element method

0 Analytic solutions
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16-PLY UNSTIFFENED PANEL BLADE STIFFENED PANEL

L, =1,=0.356m

1= %

R=0.381m,
h=2.276x10" m.
£ = 13lx 101 pa
£ = 1.303x10' pa ™~ 25-PLY SKIN
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Figure 1. Benchmark problems considered in present study.
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Figure 2. Nonlinear response of unstiffened panel subjected to end
shortening (see fig. 1).

ORIGINAL PAGE s
. OF POOR QUAL(TY



32b— - = ST
/ €€, ! T0P SURFAGE

-ax
! ! [ |
J

0 015 0.3 0.45 0.60

~m
"
&
8

€€ | BOTTOM SURFACE

Figure 3. Normalized contour pilots for displacements
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and strains in untiffened panel at 3 = 126.6
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Figure 4. Application of zooming technique to unstiffened panel.
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Figure 5. Simultaneous application of two discrete element methods to the
analysis of unstiffened panel.
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Figure 6. Accuracy of normal displacement w
obtained by reduction method.

shortening (see fig. 1l).
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Figure 7. Normalized contour plots for the global approximation
vectors - unstiffened panel subjected to axial end shortening
(see fig. 1).
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Figure 8. Heuristic approach for selecting a hierarchy of
mathematical models for blade stiffened panel.
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